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Abstract One of the major developments in cancer research in recent years has

been the construction of models that treat cancer as a cellular population subject to

natural selection. We expand on this idea, drawing upon multilevel selection theory.

Cancer is best understood in our view from a multilevel perspective, as both a by-

product of selection at other levels of organization, and as subject to selection (and

drift) at several levels of organization. Cancer is a by-product in two senses. First,

cancer cells co-opt signaling pathways that are otherwise adaptive at the organismic

level. Second, cancer is also a by-product of features distinctive to the metazoan

lineage: cellular plasticity and modularity. Applying the multilevel perspective in

this way permits one to explain transitions in complexity and individuality in cancer

progression. Our argument is a reply to Germain’s (2012) scepticism towards the

explanatory relevance of natural selection for cancer. The extent to which cancer

fulfills the conditions for being a paradigmatic Darwinian population depends on the

scale of analysis, and the details of the purported selective scenario. Taking a

multilevel perspective clarifies some of the complexities surrounding how to best

understand the relevance of evolutionary thinking in cancer progression.
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Cancer as an evolutionary process

At first glance, cancer seems the epitome of disorganized growth, rather than

adaptive evolutionary change. Indeed, cancer is often defined as a failure of the

otherwise functional regulation of cell birth and death. This view would seem to be

fundamentally at odds with treating cancer progression as a process of natural

selection. However, a trait that is dysfunctional at one temporal or spatial scale of

analysis may well constitute ‘‘efficient functioning’’ at another (Hausman 2012).

Indeed, this should not surprise us, given that multicellular organisms are (more or

less) hierarchically organized, with functional parts within parts, and subsystems

within systems. There is an active research program underway that takes this insight

as foundational; these researchers treat cancer progression as a process of natural

selection on cells and cell lineages (Michor et al. 2004; Merlo et al. 2006; Anderson

et al. 2006; Pepper et al. 2007; Greaves and Maley 2012). The idea that cancer

progression may be viewed as an evolutionary process is not new: Gause (1966)

compared a population of cancer cells to an evolving population of microbiota.

Nowell (1976) and Cairns (1975, 1978) similarly argued that ‘cancer can be viewed

as the operation of Darwinian selection among competing populations of dividing

cells’ (Cairns 1978, 151).1 What started as a minority view has now become an

active area of research, drawing upon mathematical modeling, computer simulation,

experimental evolution in model systems, and even the generation of phylogenies,

or branching evolution in cancer progression and metastasis, using high throughput

sequencing of tumors and metastatic lesions from deceased patients (Gerlinger et al.

2012; Navin et al. 2011; Yachida et al. 2010).

Philosophers of biology have begun to take notice of this research. Peter

Godfrey-Smith in ‘Darwinian Populations and Natural Selection’’ refers to cancer

progression as ‘‘re-Darwinization’’: a ‘‘decoupling’’ of cellular fitness from that of

the organism (Godfrey-Smith 2009). The idea of cancer being more or less

‘‘decoupled’’ in its fitness from its host is a useful theoretical starting point, as it

captures the two extremes of cancer’s relationship to the body. Cancer cells are

relatively autonomous as compared to other cells in the body, but autonomy is a

matter of degree. In some rare cases, e.g., infectious canine cancers, cancer can

become as autonomous from the host body as any virus is from its host. In the case

of Tasmanian devils, and some Canines, there are truly transmissible cancers:

Canine Transmissible Venereal Tumor CTVT and Devil Facial Tumor Disease

(DFTD). However, most cancer cells are not autonomous in this strong sense: most

cancer cells (in vivo) cannot transmit between hosts, or grow in culture. Indeed, it

took decades to identify a cancer cell line (HELA) that could grow indefinitely in

culture. What determines the degree of ‘‘autonomy’’ and fitness of cells and

collectives is not only on cell-intrinsic features, but also local conditions, such as

signals from neighboring cells, as well as structural features of the tissue

microenvironment (Bissell and Hines 2011). In vivo, cancer cells’ degree of

autonomy changes over time, dependent upon these local conditions, as well as the

stage of advancement of a cancer. While cancer cells are in competition, ultimately,

1 For a history of evolutionary perspectives on cancer, see, Morange (2012).
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their survival and reproductive success also depends upon cooperative interactions

with the tumor stroma, and the cooption of organismic adaptations. Below, we argue

that cancer progression can display multilevel selection dynamics.

Recently, Germain (this journal 2012) has argued that the population of cells in a

cancer is at best a ‘‘minimal’’ case of a Darwinian population. On his view, cancer

does not acquire sufficiently complex adaptations to count as paradigmatically

Darwinian, by the lights of Godfrey-Smiths’ account of Darwinian populations

(2009). We agree to an extent, but argue that Germain’s focus is too narrowly on the

individual cell. We argue that once one takes a multi-level perspective on cancer,

cancer is meaningfully described as both process and byproduct of selection. That

is, cancer progression involves cooption of adaptations at distinct levels of

organization in the biological hierarchy. We argue that this multilevel perspective

can shed light on both the dynamics of cancer progression, and differential

vulnerability to cancer within and between species and higher clades. Indeed, taking

an evolutionary perspective may assist in cancer treatment, such as demonstrating

when and why it is better to use combinations of drugs to treat cancer (Komarova

and Wodarz 2005). Our argument has two parts. In the section titled ‘‘Multi-level

selection’’, we briefly explain and describe the multilevel perspective. In the section

titled ‘‘Applying the models’’, we apply this perspective to cancer itself. In the

section titled ‘‘Adaptation and levels’’, we explain how our view departs from

Germain.

Multi-level selection

There is an extensive cannon of interdisciplinary work on multilevel selection

(Lewontin 1970; Wilson 1975; Damuth and Heisler 1988; Michod 1997; Sober and

Wilson 1999; Okasha 2005, 2006; Godfrey-Smith 2009). To understand tumor

progression, we will draw on a few key ideas in this literature. First, multilevel

selection theory starts with the relatively uncontroversial observation that popula-

tions of entities are nested within one another in the biological hierarchy:

populations of genes are nested within cells, which are nested within organisms, and

organisms are nested within populations, which are nested within species and so on

to whole lineages. Provided that these entities vary, the variation is heritable, and

makes a difference to relative fitness of variable entities, selection can act at more

than one level in this hierarchy. For, in principle, any population of entities with

heritable variation in fitness may evolve by natural selection (Lewontin 1970). In a

‘‘multilevel’’ selection situation, selection is acting on more than one level

simultaneously. Selection at one level may increase or decrease the frequency of

traits in a population, which in turn, may affect what is available to selection at a

lower or higher level of analysis.

In multilevel selection, it can become difficult to discriminate which outcomes

are due to selection at a ‘‘lower,’’ and which at ‘‘higher’’ level of analysis. Damuth

and Haisler introduced a useful distinction between multilevel selection 1 (MLS1)

and multilevel selection 2 (MLS2) to assist in discriminating between different

scenarios. As they put it, ‘‘of interest in the former case are the effects of group
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membership on individual fitnesses, and in the latter the tendencies for the groups

themselves to go extinct or to found new groups (i.e., group fitnesses)’’ (Damuth and

Heisler 1988, p. 407). That is, in MLS1, fitnesses are properties of individuals, and

character values are attributed to individuals. But, group membership can have

effects on individual fitness. When this happens, one has a case of MLS1. Because

different groups have different mixes of individuals, and some mixes are more

successful than others (i.e., the individuals in some groups better survive and

reproduce than the same individuals in a different group with different proportions

of variants), we may describe outcomes of such group effects as a product of ‘‘group

selection’’ in the sense of MLS1. The outcome in such cases is simply changing

proportions of different kinds of individuals in the whole population (the

metapopulation). Damuth and Heisler explain that some have wished to call

MLS1 ‘‘group selection’’ because group level properties (such as the relative

proportion of altruists in a group) determine the relative success of these

individuals.

But there is another sense of ‘‘group’’ selection that is often confused with this

first sense: what Damuth and Heisler prefer to call multilevel selection 2, (MLS2).

Here ‘‘group selection’’ refers to change in the frequencies of different kinds of

groups, in light of ‘‘group level’’ properties. This sense of group selection is more

controversial, not least because groups are often diffuse in space and time, and their

properties also are difficult to define and measure. However, in MLS2, character

values are attributed to groups (including both aggregate and global characters), and

it is these group level characters that make a difference to group success at

propagation, or the seeding of more groups. Groups are more ‘‘fit’’ if and only if

they propagate more groups. To be clear, it is not a necessary condition of MLS2,

according to Damuth and Heisler, that group characters be ‘‘emergent,’’ in the

strong sense that there is no way to explain the properties of the group in terms of

the properties of the individuals. Average height or extent of genetic heterogeneity

in a population is, after all, a group level trait, but it can be explained in terms of the

properties of individuals that make up the group. All that MLS2 requires is that

these group level properties are what cause group success, (measured in this case by

the seeding or propagation of new groups, in the way that colonists succeed at

colonizing new islands) (Damuth and Heisler 1988). As a vivid but simple example,

consider two groups of organisms: one that is genetically uniform, and one with a

large amount of genetic variation. In the latter group, a greater extent of genetic

variation may better enable such groups to propagate and diversify in new

environmental niches. Insofar as this group level trait (extent of genetic

heterogeneity) was a cause of relative group success at propagation, this would

count as an instance of MLS2.

Multilevel selection theory has been used to explain the emergence of new levels

of organization in the biological hierarchy, sometimes called the ‘‘major transitions

in evolution.’’ (Okasha 2005, 2006). The argument is as follows: the evolution of

multicellularity required the emergence of cooperative interactions between

populations of cells. Or, there were intermediate stages between functionally

integrated individuals, and mere collectives. This may have involved the cooption of

traits initially adaptive at the individual level in service of collective benefit.
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Quorum sensing in bacteria may be a vivid example. Quorum sensing is a method

by which bacteria detect local cell density by diffusion and accumulation of

signaling molecules in the surrounding environment. At certain densities, the

population as a whole can engage in a coordinated response, e.g., the production of

bioluminescence, population mobility, biofilm maturation, and virulence (Williams

et al. 2007). That is, quorum sensing regulates production of ‘‘public goods,’’ or

products manufactured by an individual that can then be utilized by the individual or

its neighbors. The capacity to quorum sense likely evolved from ‘‘self-signaling’’

systems that were adaptive at the individual level. (Redfield 2002; Williams et al.

2007). There are many such cases of proto-organismic collectives in nature. Or, as

Queller and Strassman put it, there are:

… levels of organism, and each level was attained by merging formerly

separate individuals at a lower level…. Multi-cellular individuals are

cooperative groups of cells, eukaryotic cells are cooperative assemblages of

multiple prokaryotic lineages and prokaryotic cells must have emerged by

assembly of formerly independent replicators. These major transitions in

evolution construct new levels of organism out of separate individuals

(Queller and Strassman 2009, p. 3143).

How do these transitions come about? Multilevel selection theory figures in one

prominent account: During the major transitions in evolution, e.g., the transition to

multicellularity, the fitness of the collective must override the fitness interests of the

parts. That is, collectives or groups must become more successful as collectives; i.e.,

they have to outcompete other collectives in reproduction, or, in propagation of

further collectives. Cooperation and functional integration of parts can play a role in

the evolution of such a collective. Cooption, or cross-level byproducts, might also

play a role in the emergence of functional integration. As in the case of quorum

sensing, traits that originally may have enhanced individual fitness can be coopted

in service of collective fitness, or the relative success of groups at propagation.

Some have argued that what might begin as a ‘‘group selection’’ process in the sense

of MLS1 (individuals benefitting due to group membership) could evolve into a

circumstance where we have a case of MLS2 (groups being more or less successful

at propagation, due to group level properties) (Michod and Herron 2006; Okasha

2006). That is, the major transitions in evolution may have involved successive

changes in population structure and organization. Individuals gradually organized

into collectives, benefited from their membership in some collectives, and

eventually, came to succeed or fail as collectives (Okasha 2005). If particle fitness

is improved by being part of a particular collective, then we can speak of the

particles, which gain mutual advantage within the collective, as having ‘‘aligned’’

fitness. Aligned fitness allows for the emergence of complex integration and

interaction within the collective. Integration and particle interaction can lead to

collectives that are functionally organized, so that the collective fitness of the group

is distinct from that of its members. In this way, collectives with division of labor

are, as Queller and Strassman argue, akin to organisms, to a greater or lesser degree.

We will argue that something approaching this process may occur in advanced

tumors.

The evolution of failure: explaining cancer as an…
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To summarize: in principle, selection can act within a collective—among the

parts—and, between collectives. These processes could be going on simultaneously,

or sequentially. Damuth and Heisler (1988) describe two senses of multi-level

selection, ‘‘MLS 2 v. MLS 2’’ to highlight the fact that ‘‘group selection’’ may refer

to different things, and that the collective fitness of a group is not necessarily simply

a matter of averaging over particle fitnesses (See Table 1 for summary). This is the

central point of critics of genic selection (see, e.g., Sober and Wilson 1999): simply

averaging fitness of different genotypes that live in distinct groups may result in a

loss of important causal information. As Wilson demonstrated (1979), group

membership can make a difference to relative fitness; for instance, altruism can

evolve in ‘‘trait groups’’—where population structure is not freely mixing, but

where similar individuals tend to find themselves together. Cooperation is less likely

to evolve in a freely mixing population, where ‘‘cheaters’’ or ‘‘free riders’’ can arise

and spread. In trait groups, the fitness of individuals is largely contingent on the

make up of their group. Nor is the fitness of a group simply the average fitness of its

members: the two can come apart and pull in different directions. Some groups may

propagate more successfully than other groups, even if the average fitness of the

group’s members is low (for discussion, see Sterelny et al. 2014).

Applying the models

In order to see why these models may be applied to cancer, there are some basic

facts about cancer initiation and progression that need to be made clear. Many

people think that cancer is a rare and unusual event; this is a natural assumption to

make, since we are made aware of cancer on the occasion of diagnosis of invasive

disease. But, invasive cancer—that is, what clinicians define as cancer—is the

endpoint of a long process; most early stages of this process fail to advance to an

invasive cancer (Sakr et al. 1993; Mori et al. 2002; Martincorena et al. 2015). Over

the course of the lifetime of the average individual, there are many thousands of cell

Table 1 Multilevel selection

Multilevel selection

(Damuth and Heisler

1988)

MLS1 MLS2

‘‘Group selection’’

refers to

Change in frequency of

individuals in light of group

membership

Change in frequencies of different kinds of

groups

Fitnesses are

properties of

Individuals Groups

Characters are

values attributed to

Individuals (e.g. altruism) Groups (e.g., group mean, population

density, proportion of different phenotypes)

Appropriate for

investigation of

Evolution of characters of

individuals likely affected by

group membership

Changing proportions of different types of

groups; different propensities to go extinct

or to found new groups
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divisions, and randomly distributed somatic mutations occur and accumulate in

normal cells. Only a very small proportion of these cells and their descendants

succeed at advancing to cancer. What molecular biologists and modelers of cancer’s

evolutionary dynamics are hoping to predict and explain is which ones will succeed

at advancing to an invasive cancer, and why. Some investigators focus on the

particular features of the cells themselves; some focus on features of whole

populations of such cells; some focus on hierarchical or spatial relations between

cells; some focus on interactions between cancer cells and their microenvironment.

Whether a cancer progresses is likely due to all of the above. Our view is that by

taking a multilevel evolutionary perspective we can integrate a variety of levels of

analysis, or show how they are mutually constraining and mutually informative.

That is, in our view, there are several different targets or levels of selection at play

in cancer initiation and progression, some more salient at different stages of

progression.

Identifying a level of selection involves identifying a population of like entities,

which have reproduction, and differential fitness due to heritable features of such

entities (Godfrey-Smith 2009). According to the multilevel selection view, there are

several distinct units or targets of selection potentially of relevance in cancer

progression. These are not mutually exclusive options, but may be co-occurring:

1. Individual selection, mutation, and drift, acting among single cells, whether

‘‘pre-cancer’’ cells, cancer cells located in a tumor, or metastatic populations of

cells. Individual cells may be more or less fit in the sense of overcoming the

variety of constraints in normal tissue that ordinarily prevent disorderly cell

growth, acquiring resources in the local tissue microenvironment, or adapting to

novel tissue microenvironments (in the case of tumor metastases).

2. ‘‘Group’’ selection in the sense of MLS1 or MLS2: Some individuals may

survive and reproduce more successfully than others, because of membership in

a group (MLS1). Alternatively relative fitness may be ascribed to groups as a

whole (MLS2). Fitness in the latter case is assessed by the ability of the tumor

to produce new tumors, due to properties of the group—these may be either

aggregate properties (e.g., population size, extent of tumor heterogeneity), or

interactive properties (functional interactions between cells or lineages in a

tumor).

We may think of the process of cancer progression as proceeding through a series

of stages, where individual selection is more salient in the beginning, and gradually,

MLS1 and MLS2 become salient (See Fig. 1). This is, arguably, not unlike the

process some have hypothesized was at work in the emergence of multicellularity,

as discussed above (see, e.g., Okasha 2006). Most models of the evolutionary

dynamics of cancer are simple individual level selection models (Nowak 2006;

Frank and Nowak 2004; Michor et al. 2004), where the fitness advantage is

attributed to a single cell, due to a gain of function or loss of function, attributable to

a single mutation. Such mutations can yield advantages such as promoting

angiogenesis, blocking tumor suppression, or inhibitors of growth (halting or

blocking apoptosis, or cell death), or promoting cell division (e.g., gain of function
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mutations). Growth in any environment will be limited by space and availability of

nutrients; among incipient cancer cells, some cells will be better able to compete for

these resources, or escape mechanisms of homeostatic control. Such evolutionary

dynamics are taken to feature centrally in early stages of the development of a

‘‘proto-’’ cancer cell lineage. Models of such circumstances look not unlike

competitive exclusion models in ecology (See Wodarz and Komarova 2014 for a

review).

There could also be selection operating at the level of cell colonies, however.

Komarova and Wodarz (2004, 2014) argue that there is an optimal ‘‘strategy’’ for

chromosomal instability (CIN) or rate of loss of heterozygosity in cancer. Cancer

cells characteristically have various chromosomal abnormalities—duplications,

losses, and inversions of large parts of the genome complement of a cell. One might

think chromosomal instability is uniformly bad, but chromosomal instability in

cancer is a ‘‘two edged sword’’: too much instability can lead to destructive genomic

changes, such as the loss or destruction of whole chromosomes. In such cases, cells

simply cannot replicate and will die off. But, if timed correctly, CIN can inactivate

tumor suppressor genes, for instance, and thus promote clonal expansion. Some

lineages will thus be more successful than others in progression to metastasis due to

the specific types of traits of cells, acquired at specific times or stages in the

progression of the disease. But, some collectives, or colonies of proto-cancer cells,

may more quickly reach a cancerous state, insofar as they have the optimal

‘‘strategy’’—or, the optimal growth rate given a certain degree of instability; too

much instability is detrimental because it increases the death rate.2 Too little slows

down progress because the rate of onset of cancerous mutations is low. Of course,

Fig. 1 Transitions in levels of selection as cancer progresses

2 A reviewer asks whether the lineage of cells in a clonal population is a ‘‘population.’’ We grant that it is

an atypical population, in that the population is all descended from a clone. But, if clonal populations of
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this is an idealized model, and populations of pre-cancerous cells are not a simple

series of clonal expansions, acquiring a specific mutation at each stage, and not

‘‘adjusting’’ their rate ‘‘strategically.’’ But, Komarova and Wodarz’s point is a

theoretical one: Early acquisition of chromosomal instability carries an advantage,

which, they argue, falls off over time, as too much genetic instability overall reduces

fitness. Lineages with the optimal strategy are the ones that ‘‘succeed’’ in

progressing to cancer. Evidence that there are many ‘‘potential’’ cancers comes from

samples of otherwise healthy tissue containing cancer mutations (Martincorena

et al. 2015).

Moreover, population architecture could well predict the evolution of faster or slower

progression to a cancer phenotype; that is, where most of the tumor is maintained by a

small number of tumor stem cells, the pattern of stem cell division can affect rate of

escape from feedback regulation, and thus also the acceleration of onset invasive cancer.

Arguably, such a case would count as an instance of both simple individual selection,

and MLS2. For, the time to the evolution of escape from feedback regulation depends

upon effective population size, which is a group level property (MLS2). The ‘‘cancer

stem cell’’ hypothesis holds that some cells in a tumor have ‘‘stem-like’’ properties. Such

cells are constantly renewing and thus more likely to both seed new tumors and perhaps

also survive chemotherapy (Jordan et al. 2006). While the cancer stem cell hypothesis is

somewhat controversial (see, e.g., Gupta et al. 2009; Nguyen et al. 2010), it is certainly

true that some cells in a cancer appear to be better able to seed new tumors.

Critics of the Darwinian picture have argued that models of cancer evolution treat

cancer as a simple clonal expansion process, where the population of cells is relatively

homogeneous (see, e.g., Weinberg 2014, pp. 458–468). We now know that tumors are

heterogeneous populations. However, there is no reason in principle why population

structure in a tumor cannot be incorporated into an evolutionary model (indeed, it’s

been done already, see, e.g., Wodarz and Komarova 2014). One simply reduces the

effective population size of a tumor, where the stem cells are the only constantly

renewing cells. Moreover, one could view a tumor as several co-evolving lineages,

each competing for space and resources. Such co-evolving subpopulations—or the

coevolution of metapopulations—is common in nature, and has been studied in a

variety of species where lineages are subdivided into local niches and so may evolve

either local adaptations, or engage in competition or co-evolutionary dynamics.

Weinberg himself considers whether ‘‘distinct subpopulations of cells within a tumor

act symbiotically, each supporting the growth and survival of the other, rather than

directly competing’’ (p. 466). Such coevolving lineages would count as a case of a

higher level of selection, either in the sense of MLS 1 or 2; e.g., cells can benefit from

membership in a tumor with a neighboring cells or cell lineages that produce acidic

byproducts that enable metastasis (Gatenby 2006); or, heterogeneous tumors may be

more successful at acquiring resources, resisting attacks from the immune system, or

seeding metastases, which effectively counts as an instance of MLS2. Such different

scenarios simply require that we adopt a multilevel perspective.

Footnote 2 continued

bacteria such as Lenski’s E. coli are populations, we don’t see why clonal populations in a tumor would

not be.
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That is, MLS2 becomes more relevant as we consider malignancy, or invasion

and metastasis. This process requires that the carcinoma grow to a stage where it can

acquire a novel phenotype (motility), and thus reproduce: metastasis is the

production of other tumors throughout the body. But this process is not simply the

release of a single cell into the blood or lymphatic system. ‘‘Seeding’’ of metastases

is an extended process that involves a complex series of steps: the breaching of the

basement membrane, intravasion, the invasion or dissemination of metastatic cells,

and the colonization of distant organ sites. This process requires the cooperation of

tumor cells and stroma; the cooption of the very same heterotypic interactions that

are ordinarily used in service of wound healing (see, e.g., Weinberg 2014,

pp. 587–607). Most attempts at seeding, or most incipient metastases fail; the

disseminated cells more often than not are destroyed in circulation. The ability of

micrometastasis to colonize remote sites is not simply a given, in other words, but

requires many attempts, akin to the colonization of remote islands by Darwin’s

finches. Some metastatic populations are more effective at colonization than others,

and once a metastasis is established, these colonies, in turn, can be more or less

successful at disseminating secondary metastases. The secondary wave of metas-

tasis is sometimes called a ‘‘metastatic shower’’ because they send off many

‘‘showers’’ of potential colonists (cf. Weinberg 2014, p. 654).

The success of metastases is not due exclusively to properties of metastatic cells.

Metastasis involves the cooperation of the stromal tissue; activation of the EMT (the

epithelial mesenchymal transition) in carcinoma requires signals from the tissue

microenvironment; and the tumor both recruits stromal cells (macrophages, mast

cells, fibroblasts) and coopts signals ordinarily associated with wound healing to

break down surrounding tissue and metastasize. That is, the entire process of

metastasis is not achieved by single cells in isolation, but the activity of both the

tumor and tumor-associated cells in stimulating angiogenesis, breaking down

surrounding tissue, and enabling intravasation. In other words, while it is single cells

that eventually establish metastases, the process of metastasis is enabled by and

indeed functionally requires the interaction of many cells in the tumor and

surrounding tissue. We might think about metastasis as rather like ‘‘r’’ selection

rather than ‘‘k’’ selection; given that the environment is unstable, and most

metastases fail, tumors more successful at sending out large populations of multiple

metastases are more likely to be successful.3 More heterogeneous primary tumors –

in the sense of both more genetically diverse, and epigenetically plastic and modular

– may be able to generate more and more successful metastases (Weigelt et al. 2003;

Klein et al. 2002).

Evolutionary dynamics also apply outside the primary tumor. Metastatic

populations continue to evolve in their new environments, and may be more or

less successful at colonizing, and generating successful secondary colonists (or,

secondary metastases), in light of the properties inherited from the primary tumor

(Psaila and Lyden 2009). The various properties of the primary tumor can be

3 A ‘r’ selection population is one with a high growth rate, seeding many individuals. ‘R’ selection is

often associated with populations which gain from dispersing over hostile environments. In contrast ‘k’

selection population have low growth rates due to the population living in an environment near carrying

capacity. See Macarthur and Wilson (1967).
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maintained in secondary tumors. Evidence for fidelity in reproduction include

micro-assays of breast cancer showing that gene expression is maintained across

metastatic sites (Weigelt et al. 2003). There is in fact evidence that the ability to

colonize itself evolves (see Klein et al. 2002). Differential success is due in part to

group level properties of the primary tumor, namely, genetic heterogeneity and

functional diversity. Different cell lines in a tumor acquire differential capacities

that combined lead to more successful reproduction of secondary metastases at

different sites. All in all, provided that the fitness-increasing properties of the group

are reproduced in the novel site, we have a case of MLS2. If multiple metastases

arise from the primary tumor, and the tumor is heterogeneous, then it is possible for

the heterogeneity of the primary tumor to be found likewise in the metastatic sites.

Indeed, we urge further work on this empirically, but we believe that the evidence

already suggests that looking outside of cell-intrinsic properties to understand the

evolutionary dynamics of metastasis is essential.4

Thus, depending on the level of analysis and the empirical details of any

particular case, cancer progression could be viewed as an individual level selection

process, or a group level selection process, in the sense of MLS1 or MLS2. That is, a

cancer cell could be competing with, or co-evolving with other cell lineages, or

incipient cancers or proto-cancer cell populations might be competing with other

proto-cancers for space, and resources. Or, differential reproduction via differential

success at invasion and metastases could be due to complex properties of the tumor

as a whole, including functional differentiation within a tumor, and cooption of

organismic adaptations in service of invasion and metastasis. That is, if invasion and

metastasis requires the acquisition of several capacities, such as the capacity to

coopt certain signaling systems in the microenvironment, different cell lineages

within a tumor might acquire these different capacities over time, and together

cooperatively produce the cancer phenotype. Komrova and Wodarz make the point

quite simply:

Assume that tumor progression requires the presence of three gene products,

call them A, B and C. A cell can evolve to accumulate all three mutations, thus

4 A reviewer comments: ‘‘There is no denying that the success of metastasis depends on many evolved

features and interactions (including cells other than the colonizing cells) and, as the author points out, that

features such as heterogeneity are tumor-level property… However, in order to show that tumours have

complex adaptations, it is insufficient to show that tumours have developed complex traits, or that these

promote progression, and one must also show that these traits were selected at this level, rather than for

the benefit of single cells.’’ This is an excellent comment and central concern worth addressing. In our

view, a trait that promotes relative survival and reproductive success of an entity at some level need not

be (initially) selected for survival and reproductive success at that particular level. As long as it

(currently) promotes survival and reproductive success of entities at that level, the trait is selected for at

that level. We believe that we have shown this to be the case, and, the following references provide

further elaboration of examples (Gatenby et al. 2007; Gavert and Ben-Ze’ev 2010; Egeblad et al.

2010; Mueller and Fuesnig 2004). Ruling out selection on a given level by arguing that a trait was not

initially selected for to benefit that level would rule out all selection on all coopted traits, which would

(potentially) rule out a good deal of selection even at the level of individual cells or organisms. See, e.g.,

Lloyd (2012) for discussion.
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achieving the malignant phenotype. On the other hand, the three gene products

can arise independently in different cells, and they can share the gene product

as a public good. In this setting, the malignant phenotype arises as an emergent

property from a collection of cooperating cells rather than an individual cell

(Wodarz and Komarova 2014, p. 460–1).

Put simply, on the MLS2 view, collectives are more or less successful in light of

group level properties: heterogeneity, or division of labor in the process of invasion

and metastasis. In the latter case, the collective of cell lineages in the tumor in some

sense has ‘‘aligned’’ fitnesses. Reproductive ‘‘success’’ in such cases is measured in

terms of invasion and propagation of metastases (recall: most incipient cancers fail

to progress); or, metastases could be more or less successful at generating secondary

metastases. In MLS2, we are interested in the way group level traits affect group

level fitness. Thus, cell lineages (including cancer and non-cancer stromal cells)

might interact as a collective (both with other cancer cells and with the tumor

stroma) thus increasing the collective’s ability to survive and reproduce, relative to

other collectives (which might include other precancerous lesions, or other

metastases, at seeding further ‘‘secondary’’ metastases). If better functional

integration in a tumor results in more successful metastasis, then the collective

fitness of the whole is distinct from the aggregative fitness of the individual cells.

There is now ample evidence that tumors are complex heterogeneous populations of

cells, and that signaling between these cells plays an essential role in tumor

progression (Egeblad et al. 2010).

Cancer cells also recruit neighboring cells in order to participate in tumor

development, both a structural support, and in building a blood supply (Mueller and

Fuesnig 2004). Arguably, this is a form of niche construction in which the cancer

cells and normally functioning cellular populations both evolve and co-evolve with

their surrounding environments (Odling-Smee et al. 2003). That is, cancer

progression requires the cooperation of the tissue microenvironment; the behavior

of a tumor is not due exclusively to the behavior of cancer (or, neoplastic) cells

alone. Carcinoma cells release growth factors that recruit macrophages, neutrophils,

and lymphocytes, which in turn orchestrate an inflammatory response that involves

the release of signals that stimulate the proliferation of epithelial cells and the

process of angiogenesis in the tumor stroma. Epithelial cells release PDGF, for

which fibroblasts & myofibroblasts have receptors; these in turn release IGF-1,

which benefits growth and survival of nearby cancer cells. Stromal and epithelial

cells collaborate in construction of the extracellular matrix (ECM). Stromal cells are

recruited by tumor cells to aid in construction of tumor colonies. Metastatic cells

can spread throughout the body because they can acquire a ‘‘disguise’’ of platelets

that enable them to evade detection (Egeblad et al. 2010). In all these cases, cancer

cells are exploiting preexisting biological programs that are normally used by

tissues for other purposes, in particular, wound healing. Tumor cells are activating a

complex program that is already available to cancer cells, insofar as they evolved

from healthy cells with the very same capacities. Wound healing uses a number of

growth factors to increase permeability of the blood vessels near the wound, attract

fibrogen to create blood clots, and attract fibroblasts, convert them into
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myofibroblast, which in turn release matrix metalloproteinases (MMPs) which play

a role in building up the extracellular matrix, or remodeling the ECM, carving out

spaces for new cells. Recruiting fibroblasts to the tumor allows the creation of a

fibrin matrix, which serves as scaffolding in the initial formation of a tumor. It’s

important to see that this is not in tension with natural selection; selection and niche

construction could be going on simultaneously. Those types more effective at

shaping their environment to suit their ends will outcompete their peers.

The cooperation of the tumor cells and stromal cells is not simply a cooption of

existing program of cells, however. The cancer cells and non-cancer cells may

coevolve; that is, cancer-associated stromal cells become more adept over time at

assisting in the survival of cancer cells within the tumor. Experimental evidence for

the importance of the stromal tissue in tumor progression comes from a variety of

sources, but we will discuss just one powerful case study. CAFs are cancer-

associated fibroblasts, very similar to fibroblasts in normal cellular tissue, which

play a role in building up scaffolding in injured tissue. An experiment to test the role

of CAFs mixed normal human prostate cancer cells in combination with different

kinds of fibroblastic cells, and then implanted them in host immunocompromised

Nude mice. When cancer cells were mixed with CAFs, they grew tumors 500 times

as large than when mixed with fibroblasts from normal prostate glands prior to

injection into hosts (Olumi et al. 1999). Weinberg argues that the cumulative

evidence of the role of CAFs in tumor formation suggests that ‘‘stromal cells in

advanced carcinomas, having coexisted with epithelial cancer cells for many years,

may change their genotype and acquire traits that genetically normal stromal cells

cannot achieve. This suggests that stromal cells co-evolve with their neoplastic

neighbors during long periods of tumor development.’’ (Weinberg 603) In other

words, a tumor (which is composed not only of cancer cells, but also of stromal

tissue) is a complex tissue with co-evolving cell lineages, composed not only of

cancer cells, but also non-cancer cells, which together cooperate in the progression

of a tumor to metastasis. Indeed, Egeblad et al. (2010) claim that the highly

integrative functional organization of some tumors suggests that they should be

considered as akin to organs.

It’s important to note, as Fisher pointed out, natural selection is not evolution

(Fisher 1930). While there are multiple levels of selection in operation that

potentially play an explanatory role in cancer, we also grant that there must be a role

for drift. There is no doubt that the population size of cells in a tumor as a whole is

sufficiently large for selection to overcome drift in the tumor as a whole; the volume

of a cubic centimeter within a tumor cell mass contains about 109 cells. However,

tumors—to say the least—have a complicated population structure. It is quite likely

that whether a cancer cell initially lives or dies may have to do as much with

accidents of location as particular fitness-enhancing features intrinsic to the cell.

The relative importance of selection versus drift will vary case by case; for instance,

there are likely many isolated sublines of cancer cells within a tumor that may or

may not survive, given lack of access to a blood supply, or architectural features of

the tissue microenvironment, rather than features intrinsic to the cancer cells or

populations of such cells (Crespi and Summers 2006). The threshold of .2 mm is the

maximum required for oxygen to effectively diffuse between tissues; so, tumors will
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not grow if greater than .2 mm distance from blood vessels. This mimics the way

the fitness of normally functioning somatic cells is determined by their local cellular

signaling environment rather than their own intrinsic features. Further, where a

cancer is initiated may affect how slowly or quickly it progresses. Drift may well

explain a good deal of variation we find in whether and why tumors progress to

metastasis. And, if stem cell architecture affects tumor growth, such that only

certain subpopulations are driving growth, drift will play a significant role.

The relevant grain of analyses and thus level of selection which explains any

given phenomena of interest will be in part dictated by the questions we ask. If we

are interested primarily in which cells come to predominate in a tumor, then a

selection process within the population of cancer cells itself is a better target.

However, if we are interested in using the body’s own resources to fight cancer (e.g.,

via the development of immune therapies), perhaps we may be interested in viewing

the tumor and stromal tissue as a whole (and its collective fitness enhancing

properties) as a subject of analysis. Thus, there is a pragmatic dimension to the

question: where is selection acting? But, there is also an empirical fact of the matter

that constrains whether and to what extent selection (or, perhaps drift) is genuinely

responsible for a given outcome of interest.

In sum, this multi-level perspective provides a representation of cancer

progression that is both predictive and explanatory. The accumulation of mutations

(and epigenetic changes) in neoplastic progression involve heritable variation in

fitness of cancer cells and lineages, e.g., timing and acquisition of particular

mutation types, chromosomal instability, hypoxia, acid resistance, transition to

mesenchymal phenotype. Cancer progression involves several transitions in

individuality and levels of selection, and, is a unique case of multi-level selection:

it evolves at the level of populations of cells, competition among cell lineages, via

cooption, a kind of cross-level exaptation, and as a group, or higher level

‘‘individual.’’

Adaptation and levels

Recently it has been claimed that somatic cell evolution by natural selection is not

particularly relevant to understanding cancer (Germain 2012). Germain claims that

while cancer meets the minimal requirements for natural selection, as described in

Godfrey-Smith’s Darwinian Populations, the main cases described as adaptations

via a natural selection are not ‘‘complex’’ adaptations. Given that natural selection

cannot explain the formation of such adaptations, he claims that it lacks explanatory

power.

A central presupposition in Germain’s argument is that he holds that for any

feature to be an adaptation it must be the product of a gradual accumulation of

iterative changes to the phenotypes. Each case Germain discusses is the product of a

single large change. Senescence and apoptosis avoidance are products of mutations

to TP53; immune evasion is gained through the loss of Human Leukocyte Antigen

(HLA); and resistance to therapy is described as the loss of the expression of a

targeting intermediate for the attachment of drugs or the activation molecular means
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for resisting drug uptake. In all these cases, Germain argues that the adaptation in

question is due to a single mutation, not the product of cumulative change, and

therefore not meaningfully described as complex adaptations.

Whether or not a trait is due to a single mutation of large effect or many

mutations of small effect is irrelevant to whether it is in fact an adaptation. As

Turner (1977) showed, mimicry in butterflies (a significant adaptive trait) can in

some cases be due to major mutations with large effects on fitness, followed by

mutations of small effect. But, there is a larger point to be considered here. Whether

a trait is an adaptation, and for what, will depend on the grain of analysis or entity

that the phenotype is predicated of. If selection only occurs in populations of cancer

cells, and adaptations only to the single cell, affecting only its immediate

descendants, then a Darwinian perspective would indeed not be very informative.

However, if we ‘‘scale up’’ or ‘‘zoom out’’ on the population over a longer time

scale, it becomes less implausible to see these adaptations as cumulative changes. If

what we are interested in is the production of the cancerous phenotype as described

by something similar to ‘‘The Hallmarks of Cancer’’ then a natural selection

framework is very informative5 . While some of the genes described by Germain are

definitely important for a cancer cell’s survival, they only can be treated as part of a

‘‘cumulative’’ adaptation insofar as collectively they contribute to a tumor’s growth,

persistence and metastasis.

Many of the cancer adaptations only appear to make sense at the tumor level, or

at the level of collective fitness, where the collective includes the stromal tissue.

There is evidence of cooperative coevolution between both cancer and stromal cells,

each contributing to cycles of signals that promote growth, reshape the extracellular

matrix, and up regulation of growth factors to produce angiogenesis, as well as

promote invasion and metastasis. There is an incredible wealth of such positive

feedback loops between carcinoma cells and what are called ‘‘Tumor-associated

Macrophages,’’ ‘‘Cancer-Associated Fibroblasts,’’ and other cells in the reactive

stroma. Acquisition of malignancy is not, in other words, a product of a series of

mutations alone, but of the collaboration of both mutant alleles in cancer cell

genomes and the signals that these cells send and receive from the tumor

microenvironment (Karamysheva 2008). If we analyse a particular mutation of an

individual cell that up regulates any of these growth factors we would not be able to

say there was adaptation. However, the impact of multiple mutations can be

cumulative and amplified by positive feedback, yielding, e.g., the angiogenic

switch. That is, angiogenesis is product of the aggregation of multiple cell line

mutations, and interaction between carcinoma and stroma. This is a stepwise

accumulation of changes in the population that produces an adaptive phenotype for

the tumor as a whole.

The key is to see this as a multilevel selective process, with selection operating at

distinct levels simultaneously. There are enough features in common between the

production of the cancerous phenotype and the production of other phenotypes in

5 In Hanahan and Weinberg (2000) they claim cancer is a population of cells with the following features

(1) Self stimulation of growth (2) resist inhibitory signals (3) apoptosis avoidance (4) angiogenesis (5)

unlimited replication (6) metastasis.
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populations to apply natural selection style models to cancer dynamics. This is not

to say that there are not important differences. Cancer is a by-product of the

adaptation and evolution of complex organisms. Thus, many (most) adaptations of

complex tumors are themselves byproducts of our evolutionary history.

Why are metazoans so susceptible to cancer?

We have described cancer as process in which somatic cell evolve to have features

of a Darwinian population. Cancer progression involves transitions in the levels of

selection similar to the major transitions of evolution. Of course, major transitions

take hundreds of thousands of years, but cancer progression from the first progenitor

cells usually takes decades, though it can occur much more quickly. How is it that

metazoans are particularly vulnerable to cancer? We have argued that this is in part

due to cancer cells’ cooption of organismic adaptations; here we claim additionally

that cancer is a byproduct not only of organismic adaptations, but features

distinctive to the metazoan clade (though, see, e.g., Aktipis et al. 2015 for a

discussion of ‘‘cancer like’’ phenomena in plants).

The fact that many parts of our body (from organs, to cells, to organelles, to

features of the genome themselves) are modular and thus quasi-independent, or can

evolve or change over time without affecting the fitness of other parts, has made it

possible for complex adaptations like the vertebrate limb to evolve. It also makes a

particular type of defection possible. The very features that enable evolvability

(quasi-independence, plasticity), also permit a tumor to arise or remain undetected.

Thus, that cancer happens is in part a product of our being a highly evolvable

lineage; in other words, it is a product of our fitness from a clade level perspective.

The plasticity that enables metazoan cells to pass from epithelial to mesenchymal

and then from mesenchymal to epithelial phenotypes, is what makes metastasis

possible in carcinoma. While plants can suffer from uncontrolled cellular growths,

the lack of an EMT, and thus cellular motility in plants prevents the possibility of

metastatic tumors.

There is a history of selection for a number of traits that are recruited or deployed

to promote tumor growth. Many traits that contribute to organismic fitness (or,

fitness at the level of the whole organism) also are ‘‘coopted’’ by cancer cells

(Crespi and Summers 2006). For instance, cellular plasticity, extensive proliferative

capacity, mobility, and availability of lymphatic and vascular channels for cell

migration all contribute to embryogenesis, wound healing, tissue renewal, and

placental implantation. They also contribute to cancer initiation and progression. In

other words, cancer is both product and byproduct of a multi-level selection process:

the process of selection among cells within whole organisms and, a by-product of

selection between individual organisms.

The way cancer uses local micro-environment can be understood in reference to

the adaptations the normally functioning cell lineages have, in light of selection at

the level of the organism as a whole. Metastatic cells acquire their mesenchymal

phenotype because they both send and receive signals to surrounding tissue that

permit the breakdown of the extracellular matrix, and re-activate the very same
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‘‘protocols’’ involved in the EMT (epithelial-mesenchymal transition) in develop-

ment and wound healing. EMT is the process by which epithelial cells lose their

polarity and cell–cell adhesion allowing them to be mobile. Cancer also coopts the

signaling networks it is a part of; and, it ‘‘re-ignites’’ the very same internal

programs that make possible wound healing and development, over the course of its

natural history. In other words, subversion in cancer is only made possible by taking

advantage of those very mechanisms by which subversion is (generally speaking)

prevented: those very same signaling routes that ordinarily foster or further

cooperative activity.

The transitions cancer goes through as it goes metastatic mirror the major

transitions of evolution. The same features that make multicellularity possible

operate in cancer progression to metastasis: the development of shared fitness

interests; genetic bottlenecks (with both stem cells, and metastasis); division of

labor (variable fitness of cancer cells in different tissue microenvironments); export

of fitness (to the tumor as a whole); and rarely, perhaps, functional integration. Just

as the multilevel selection framework can help explain the major transitions it can

also help explain the major transitions in cancer phenotype.

Conclusions

We have argued that cancer is a multi-level evolutionary process. The accumulation

of mutations (and epigenetic changes) in neoplastic progression can be understood

as an evolutionary process; both individual cells and lineages in a cancer may be

more or less successful in progressing to metastasis, depending upon features like

the timing and acquisition of particular mutation types, or chromosomal instability.

Cancer also coopts signaling systems that evolved in service of higher levels of

organization, systems that ordinarily regulate wound healing, development and

immune response. At advanced stages, the combined tumor and stroma can be

viewed as an integrated entity, i.e., a collective with organization and fitness as a

whole (MLS2 as opposed to MLS1). Cancer is an exemplary case multi-level

selection process: it evolves at the level of populations of cells, competition among

cell lineages, via cooption or a kind of cross-level expatiation, and as a group.
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Williams P, Winzer K, Chan W, Ćamara M (2007) Look who’s talking: communication and quorum

sensing in the bacterial world. Philos Trans R Soc Lond, Ser B 362(1483):1119–1134

Wilson DS (1975) A theory of group selection. Proc Natl Acad Sci 72(1):143–146

Wodarz D, Komarova NL (2014) Dynamics of cancer: mathematical foundations of oncology. World

Scientific Publishing Co, Singapore

Yachida S et al (2010) Distant metastasis occurs late during the genetic evolution of pancreatic cancer.

Nature 467:1114

The evolution of failure: explaining cancer as an…

123

Author's personal copy


	The evolution of failure: explaining cancer as an evolutionary process
	Abstract
	Cancer as an evolutionary process
	Multi-level selection
	Applying the models
	Adaptation and levels
	Why are metazoans so susceptible to cancer?
	Conclusions
	References




